1,443 research outputs found

    A topological hierarchy-based approach to layered manufacturing of functionally graded multi-material objects

    Get PDF
    This paper presents an approach based on topological hierarchy to representation and subsequent fabrication of functionally graded multi-material (FGM) objects by layered manufacturing. The approach represents an FGM object by material control functions and discretisation of slice contours. Based on the topological hierarchy of slice contours, material control functions are associated with contour families of some representative layers across the X-Y plane and along the Z-plane. The material composition at any location is calculated from the control functions, and the slice contours are discretised into sub-regions of constant material composition. The discretisation resolution can be varied to suit display and fabrication requirements. In comparison with pixel- or voxel-based representation schemes, this approach is computationally efficient, requires little memory, and facilitates fabrication of large and complex objects, which can be assemblies of FGM and discrete materials. The proposed approach has been incorporated with a virtual prototyping system to provide a practical and effective tool for processing FGM objects. © 2009.postprin

    A multi-material virtual prototyping system

    Get PDF
    This paper proposes a virtual prototyping system for digital fabrication of multimaterial prototypes. It consists mainly of a topological hierarchy-sorting algorithm for processing slice contours, and a virtual simulation system for visualisation and optimisation of multi-material layered manufacturing (MMLM) processes. The topological hierarchysorting algorithm processes the hierarchy relationship of complex slice contours. It builds a parent-and-son list that defines the containment relationship of the slice contours, and subsequently arranges the contours in an appropriate sequence which facilitates optimisation of toolpath for MMLM by avoiding redundant movements. The virtual simulation system simulates MMLM processes and provides vivid visualisation of the resulting multi-material prototypes for quality analysis and optimisation of the processes.published_or_final_versio

    Digital fabrication of multi-material biomedical objects

    Get PDF
    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.postprin

    Digital Fabrication of Multi-Material Objects for Biomedical Applications

    Get PDF
    Open Access publicationlink_to_OA_fulltex

    A multi-material virtual prototyping system for biomedical applications

    Get PDF
    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module, and a virtual reality (VR) simulation module. The DMMVP module is used for design and process planning of discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multimaterial (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multimaterial objects, which can be subsequently visualized and analyzed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a human dextrocardic heart made of discrete multi-materials and a hip joint assembly of FGM are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show the MMVP system is a practical tool for modelling, visualization, process planning, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. ©2009 IEEE.published_or_final_versionThe IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems (VECIMS) 2009, Hong Kong, 11-13 May 2009. In Proceedings of the IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems, 2009, p. 73-7

    Data Management ofRFID-based Track-and-Trace Anti-counterfeiting in Apparel Supply Chain

    Get PDF
    With recent advancement in Radio Frequency Identification (RFID), RFID-based track-and-trace anti-counterfeiting has attracted considerable research interests. A track-and-trace anti-counterfeiting system requires an integral and reliable electronic pedigree (e-pedigree) to ensure high product visibility along the supply chain. With the continuous movements of large volumes of products along the supply chain, huge amounts of RFID data would be inevitably generated, posing great challenges to system development and operation. As such, the front-end RFID data should be well-formatted for efficient capturing, filtering, and synchronization in a logical and reliable way, so that the accumulated e-pedigree would be complete and trustworthy for subsequent product authentication. In this paper, we present an innovative track-and-trace anti-counterfeiting system for apparel products, and discuss a number of key data management issues, such as e-pedigree formatting, data synchronization, and traceability / visibility control. A data format of e-pedigree for full traceability of garments is proposed to support products authentication in item-level, products antilost in pallet-level and products status prediction in batch-level. Based on this format, a three-step mechanism of data synchronization is established to ensure e-pedigree integrity. To avoid possible leakage/falsification of e-pedigree data, an RBACbased access control is proposed as an auxiliary module of the anti-counterfeiting system.published_or_final_versio

    Item-level RFID for enhancement of customer shopping experience in apparel retail

    Get PDF
    In the customer-oriented apparel retail industry, providing satisfactory shopping experience for customers is a vital differentiator. However, traditional stores generally cannot fully satisfy customer needs because of difficulties in locating target products, out-of-stocks, a lack of professional assistance for product selection, and long waiting for payments. Therefore, this paper proposes an item-level RFID-enabled retail store management system for relatively high-end apparel products to provide customers with more leisure, interaction for product information, and automatic apparel collocation to promote sales during shopping. In this system, RFID hardware devices are installed to capture customer shopping behaviour and preferences, which would be especially useful for business decision-making and proactive individual marketing to enhance retail business. Intelligent fuzzy screening algorithms are then developed to promote apparel collocation based on the customer preferences, the design features of products, and the sales history accumulated in the database. It is expected that the proposed system, when fully implemented, can help promote retail business by enriching customers with intelligent and personalized services, and thus enhance the overall shopping experience. © 2015 Elsevier B.V.postprin

    Next generation of growth-sparing techniques: preliminary clinical results of a magnetically controlled growing rod in 14 patients

    Get PDF
    Session 3A - Early Onset Scoliosis: Paper no. 33SUMMARY: Growth-sparing techniques are commonly used for the treatment of progressive EOS. The standard growing rod (GR) technique requires multiple surgeries for lengthening. The preliminary results of MCGR has shown the comparable outcomes to standard GR without the need for repeated surgery which can be expected to reduce the overall complication rate in GR surgery. INTRODUCTION: The growing rod (GR) technique for management of progressive Early-Onset Scoliosis (EOS) is a viable alternative but with a high complication rate attributed to frequent surgical lengthenings. The safety and efficacy of a non-invasive Magnetically Controlled Growing Rod (MCGR) has been previously reported in a porcine model. We are reporting the preliminary results of this technique in EOS. METHODS: Retrospective review of prospectively collected multi-center data. Only patients who underwent MCGR surgery and at least 3 subsequent spinal distractions were included in this preliminary review. Distractions were performed in clinic without anesthesia or analgesics. T1-T12 and T1-S1 height and the distraction distance inside the actuator were analyzed in addition to conventional clinical and radiographic data. RESULTS: Patients (N=14; 7 F and 7 M) had a mean age of 8y+10m (3y+6m to 12y+7m) and underwent a total of 14 index surgeries (SR: index single rod in 5 and DR: dual rod in 9) and 91 distractions. There were 5 idiopathic, 4 neuromuscular, 2 congenital, 2 syndromic and one NF. Mean follow-up (FU) was 10 months (5.8-18.2). Mean Cobb changed from 57° pre-op to 35° post-op and correction was maintained (35°) at latest FU. T1-T12 increased by 4 mm for SR and 10 mm for DR with mean monthly gain of 0.5 and 1.39, respectively. T1-S1 gain was 4 mm for SR and 17 mm for DR with mean monthly gain of 0.5 mm for SR and 2.35 mm for DR. The mean interval between index surgery and the first distraction was 66 days and thereafter was 43 days. Complications included one superficial infection in (SR), one prominent implant (DR) and minimal loss of initial distraction in three after index MCGR (all SR). Overall, partial loss of distraction was observed following 14 of the 91 distractions (one DR and 13 SR). This loss was regained in subsequent distractions. There was no neurologic deficit or implant failure. CONCLUSION: MCGR appears to be safe and provided adequate distraction similar to the standard GR technique without the need for repeated surgeries. DR patients had better initial curve correction and greater spinal height. No major complications were observed during the short follow-up period. The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e., the drug or medical device is being discussed for an ‘off label’ use).postprin

    Alternatives to colonoscopy for population-wide colorectal cancer screening

    Get PDF
    published_or_final_versio

    Anti-CD47 antibody suppresses tumor growth and augments the effect of chemotherapy treatment in hepatocellular carcinoma

    Get PDF
    BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is often associated with metastasis and recurrence leading to a poor prognosis. Therefore, development of novel treatment regimens is urgently needed to improve the survival of HCC patients. In this study, we aimed to investigate the in vitro and in vivo effects of anti-CD47 antibody alone and in combination with chemotherapy in HCC. METHODS: In this study, we examined the functional effects of anti-CD47 antibody (B6H12) on cell proliferation, sphere formation, migration and invasion, chemosensitivity, macrophage-mediated phagocytosis, and tumorigenicity both in vitro and in vivo. The therapeutic efficacy of anti-CD47 antibody alone or in combination with doxorubicin was examined in patient-derived HCC xenograft. RESULTS: Blocking CD47 with anti-CD47 monoclonal antibody (B6H12) at 10mug/mL could suppress self-renewal, tumorigenicity and migration and invasion abilities of MHCC-97L and Huh-7 cells. Interestingly, anti-CD47 antibody synergized the effect of HCC cells to chemotherapeutic drugs including doxorubicin and cisplatin. Blockade of CD47 by anti-CD47 antibody induced macrophage-mediated phagocytosis. Using a patient-derived HCC xenograft mouse model, we found that anti-CD47 antibody (400mug/mouse) in combination with doxorubicin (2mg/kg) exerted maximal effects on tumor suppression, as compared with doxorubicin and anti-CD47 antibody alone. CONCLUSIONS: Anti-CD47 antibody treatment could complement chemotherapy which may be a promising therapeutic strategy for the treatment of HCC patients. This article is protected by copyright. All rights reserved.postprin
    • …
    corecore